1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
| // Single line comment /* Multi- line comment */
// A package clause starts every source file. // Main is a special name declaring an executable rather than a library. package main
// Import declaration declares library packages referenced in this file. import ( "fmt" // A package in the Go standard library. "io/ioutil" // Implements some I/O utility functions. m "math" // Math library with local alias m. "net/http" // Yes, a web server! "strconv" // String conversions. )
// A function definition. Main is special. It is the entry point for the // executable program. Love it or hate it, Go uses brace brackets. func main() { // Println outputs a line to stdout. // Qualify it with the package name, fmt. fmt.Println("Hello world!")
// Call another function within this package. beyondHello() }
// Functions have parameters in parentheses. // If there are no parameters, empty parentheses are still required. func beyondHello() { var x int // Variable declaration. Variables must be declared before use. x = 3 // Variable assignment. // "Short" declarations use := to infer the type, declare, and assign. y := 4 sum, prod := learnMultiple(x, y) // Function returns two values. fmt.Println("sum:", sum, "prod:", prod) // Simple output. learnTypes() // < y minutes, learn more! }
/* <- multiline comment Functions can have parameters and (multiple!) return values. Here `x`, `y` are the arguments and `sum`, `prod` is the signature (what's returned). Note that `x` and `sum` receive the type `int`. */ func learnMultiple(x, y int) (sum, prod int) { return x + y, x * y // Return two values. }
// Some built-in types and literals. func learnTypes() { // Short declaration usually gives you what you want. str := "Learn Go!" // string type.
s2 := `A "raw" string literal can include line breaks.` // Same string type.
// Non-ASCII literal. Go source is UTF-8. g := 'Σ' // rune type, an alias for int32, holds a unicode code point.
f := 3.14195 // float64, an IEEE-754 64-bit floating point number. c := 3 + 4i // complex128, represented internally with two float64's.
// var syntax with initializers. var u uint = 7 // Unsigned, but implementation dependent size as with int. var pi float32 = 22. / 7
// Conversion syntax with a short declaration. n := byte('\n') // byte is an alias for uint8.
// Arrays have size fixed at compile time. var a4 [4]int // An array of 4 ints, initialized to all 0. a3 := [...]int{3, 1, 5} // An array initialized with a fixed size of three // elements, with values 3, 1, and 5.
// Slices have dynamic size. Arrays and slices each have advantages // but use cases for slices are much more common. s3 := []int{4, 5, 9} // Compare to a3. No ellipsis here. s4 := make([]int, 4) // Allocates slice of 4 ints, initialized to all 0. var d2 [][]float64 // Declaration only, nothing allocated here. bs := []byte("a slice") // Type conversion syntax.
// Because they are dynamic, slices can be appended to on-demand. // To append elements to a slice, built-in append() function is used. // First argument is a slice to which we are appending. Commonly, // the array variable is updated in place, as in example below. s := []int{1, 2, 3} // Result is a slice of length 3. s = append(s, 4, 5, 6) // Added 3 elements. Slice now has length of 6. fmt.Println(s) // Updated slice is now [1 2 3 4 5 6] // To append another slice, instead of list of atomic elements we can // pass a reference to a slice or a slice literal like this, with a // trailing elipsis, meaning take a slice and unpack its elements, // appending them to slice s. s = append(s, []int{7, 8, 9}...) // Second argument is a slice literal. fmt.Println(s) // Updated slice is now [1 2 3 4 5 6 7 8 9]
p, q := learnMemory() // Declares p, q to be type pointer to int. fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
// Maps are a dynamically growable associative array type, like the // hash or dictionary types of some other languages. m := map[string]int{"three": 3, "four": 4} m["one"] = 1
// Unused variables are an error in Go. // The underbar lets you "use" a variable but discard its value. _, _, _, _, _, _, _, _, _, _ = str, s2, g, f, u, pi, n, a3, s4, bs // Output of course counts as using a variable. fmt.Println(s, c, a4, s3, d2, m)
learnFlowControl() // Back in the flow. }
// It is possible, unlike in many other languages for functions in go // to have named return values. // Assigning a name to the type being returned in the function declaration line // allows us to easily return from multiple points in a function as well as to // only use the return keyword, without anything further. func learnNamedReturns(x, y int) (z int) { z = x * y return // z is implicit here, because we named it earlier. }
// Go is fully garbage collected. It has pointers but no pointer arithmetic. // You can make a mistake with a nil pointer, but not by incrementing a pointer. func learnMemory() (p, q *int) { // Named return values p and q have type pointer to int. p = new(int) // Built-in function new allocates memory. // The allocated int is initialized to 0, p is no longer nil. s := make([]int, 20) // Allocate 20 ints as a single block of memory. s[3] = 7 // Assign one of them. r := -2 // Declare another local variable. return &s[3], &r // & takes the address of an object. }
func expensiveComputation() float64 { return m.Exp(10) }
func learnFlowControl() { // If statements require brace brackets, and do not require parens. if true { fmt.Println("told ya") } // Formatting is standardized by the command line command "go fmt." if false { // Pout. } else { // Gloat. } // Use switch in preference to chained if statements. x := 42.0 switch x { case 0: case 1: case 42: // Cases don't "fall through". /* There is a `fallthrough` keyword however, see: https://github.com/golang/go/wiki/Switch#fall-through */ case 43: // Unreached. default: // Default case is optional. } // Like if, for doesn't use parens either. // Variables declared in for and if are local to their scope. for x := 0; x < 3; x++ { // ++ is a statement. fmt.Println("iteration", x) } // x == 42 here.
// For is the only loop statement in Go, but it has alternate forms. for { // Infinite loop. break // Just kidding. continue // Unreached. }
// You can use range to iterate over an array, a slice, a string, a map, or a channel. // range returns one (channel) or two values (array, slice, string and map). for key, value := range map[string]int{"one": 1, "two": 2, "three": 3} { // for each pair in the map, print key and value fmt.Printf("key=%s, value=%d\n", key, value) }
// As with for, := in an if statement means to declare and assign // y first, then test y > x. if y := expensiveComputation(); y > x { x = y } // Function literals are closures. xBig := func() bool { return x > 10000 // References x declared above switch statement. } fmt.Println("xBig:", xBig()) // true (we last assigned e^10 to x). x = 1.3e3 // This makes x == 1300 fmt.Println("xBig:", xBig()) // false now.
// What's more is function literals may be defined and called inline, // acting as an argument to function, as long as: // a) function literal is called immediately (), // b) result type matches expected type of argument. fmt.Println("Add + double two numbers: ", func(a, b int) int { return (a + b) * 2 }(10, 2)) // Called with args 10 and 2 // => Add + double two numbers: 24
// When you need it, you'll love it. goto love love:
learnFunctionFactory() // func returning func is fun(3)(3) learnDefer() // A quick detour to an important keyword. learnInterfaces() // Good stuff coming up! }
func learnFunctionFactory() { // Next two are equivalent, with second being more practical fmt.Println(sentenceFactory("summer")("A beautiful", "day!"))
d := sentenceFactory("summer") fmt.Println(d("A beautiful", "day!")) fmt.Println(d("A lazy", "afternoon!")) }
// Decorators are common in other languages. Same can be done in Go // with function literals that accept arguments. func sentenceFactory(mystring string) func(before, after string) string { return func(before, after string) string { return fmt.Sprintf("%s %s %s", before, mystring, after) // new string } }
func learnDefer() (ok bool) { // Deferred statements are executed just before the function returns. defer fmt.Println("deferred statements execute in reverse (LIFO) order.") defer fmt.Println("\nThis line is being printed first because") // Defer is commonly used to close a file, so the function closing the // file stays close to the function opening the file. return true }
// Define Stringer as an interface type with one method, String. type Stringer interface { String() string }
// Define pair as a struct with two fields, ints named x and y. type pair struct { x, y int }
// Define a method on type pair. Pair now implements Stringer. func (p pair) String() string { // p is called the "receiver" // Sprintf is another public function in package fmt. // Dot syntax references fields of p. return fmt.Sprintf("(%d, %d)", p.x, p.y) }
func learnInterfaces() { // Brace syntax is a "struct literal". It evaluates to an initialized // struct. The := syntax declares and initializes p to this struct. p := pair{3, 4} fmt.Println(p.String()) // Call String method of p, of type pair. var i Stringer // Declare i of interface type Stringer. i = p // Valid because pair implements Stringer // Call String method of i, of type Stringer. Output same as above. fmt.Println(i.String())
// Functions in the fmt package call the String method to ask an object // for a printable representation of itself. fmt.Println(p) // Output same as above. Println calls String method. fmt.Println(i) // Output same as above.
learnVariadicParams("great", "learning", "here!") }
// Functions can have variadic parameters. func learnVariadicParams(myStrings ...interface{}) { // Iterate each value of the variadic. // The underbar here is ignoring the index argument of the array. for _, param := range myStrings { fmt.Println("param:", param) }
// Pass variadic value as a variadic parameter. fmt.Println("params:", fmt.Sprintln(myStrings...))
learnErrorHandling() }
func learnErrorHandling() { // ", ok" idiom used to tell if something worked or not. m := map[int]string{3: "three", 4: "four"} if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map. fmt.Println("no one there") } else { fmt.Print(x) // x would be the value, if it were in the map. } // An error value communicates not just "ok" but more about the problem. if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value // prints 'strconv.ParseInt: parsing "non-int": invalid syntax' fmt.Println(err) } // We'll revisit interfaces a little later. Meanwhile, learnConcurrency() }
// c is a channel, a concurrency-safe communication object. func inc(i int, c chan int) { c <- i + 1 // <- is the "send" operator when a channel appears on the left. }
// We'll use inc to increment some numbers concurrently. func learnConcurrency() { // Same make function used earlier to make a slice. Make allocates and // initializes slices, maps, and channels. c := make(chan int) // Start three concurrent goroutines. Numbers will be incremented // concurrently, perhaps in parallel if the machine is capable and // properly configured. All three send to the same channel. go inc(0, c) // go is a statement that starts a new goroutine. go inc(10, c) go inc(-805, c) // Read three results from the channel and print them out. // There is no telling in what order the results will arrive! fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
cs := make(chan string) // Another channel, this one handles strings. ccs := make(chan chan string) // A channel of string channels. go func() { c <- 84 }() // Start a new goroutine just to send a value. go func() { cs <- "wordy" }() // Again, for cs this time. // Select has syntax like a switch statement but each case involves // a channel operation. It selects a case at random out of the cases // that are ready to communicate. select { case i := <-c: // The value received can be assigned to a variable, fmt.Printf("it's a %T", i) case <-cs: // or the value received can be discarded. fmt.Println("it's a string") case <-ccs: // Empty channel, not ready for communication. fmt.Println("didn't happen.") } // At this point a value was taken from either c or cs. One of the two // goroutines started above has completed, the other will remain blocked.
learnWebProgramming() // Go does it. You want to do it too. }
// A single function from package http starts a web server. func learnWebProgramming() {
// First parameter of ListenAndServe is TCP address to listen to. // Second parameter is an interface, specifically http.Handler. go func() { err := http.ListenAndServe(":8080", pair{}) fmt.Println(err) // don't ignore errors }()
requestServer() }
// Make pair an http.Handler by implementing its only method, ServeHTTP. func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) { // Serve data with a method of http.ResponseWriter. w.Write([]byte("You learned Go in Y minutes!")) }
func requestServer() { resp, err := http.Get("http://localhost:8080") fmt.Println(err) defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) fmt.Printf("\nWebserver said: `%s`", string(body)) }
|